17,854 research outputs found

    Science with the World Space Observatory - Ultraviolet

    Get PDF
    The World Space Observatory-Ultraviolet (WSO-UV) will provide access to the UV range during the next decade. The instrumentation on board will allow to carry out high resolution imaging, high sensitivity imaging, high resolution (R~55000) spectroscopy and low resolution (R~2500) long slit spectroscopy. In this contribution, we briefly outline some of the key science issues that WSO-UV will address during its lifetime. Among them, of special interest are: the study of galaxy formation and the intergalactic medium; the astronomical engines; the Milky Way formation and evol ution, and the formation of the Solar System and the atmospheres of extrasolar p lanets.Comment: Just one text file (aigomezdecastro.tex). To be published in the proceeding of the conference: "New Quest in Stellar Astrophysics II: UV properties of evolved stellar populations" held in Puerto Vallarta - Mexico, in april 200

    A novel programmable lysozyme-based lysis system in Pseudomonas putida for biopolymer production

    Get PDF
    Indexación: Scopus; Web of Science.Cell lysis is crucial for the microbial production of industrial fatty acids, proteins, biofuels, and biopolymers. In this work, we developed a novel programmable lysis system based on the heterologous expression of lysozyme. The inducible lytic system was tested in two Gram-negative bacterial strains, namely Escherichia coli and Pseudomonas putida KT2440. Before induction, the lytic system did not significantly arrest essential physiological parameters in the recombinant E. coli (ECPi) and P. putida (JBOi) strain such as specific growth rate and biomass yield under standard growth conditions. A different scenario was observed in the recombinant JBOi strain when subjected to PHA-producing conditions, where biomass production was reduced by 25% but the mcl-PHA content was maintained at about 30% of the cell dry weight. Importantly, the genetic construct worked well under PHA-producing conditions (nitrogen-limiting phase), where more than 95% of the cell population presented membrane disruption 16 h post induction, with 75% of the total synthesized biopolymer recovered at the end of the fermentation period. In conclusion, this new lysis system circumvents traditional, costly mechanical and enzymatic cell-disrupting procedures.https://www.nature.com/articles/s41598-017-04741-2.pd

    The formation of planetary disks and winds: an ultraviolet view

    Full text link
    Planetary systems are angular momentum reservoirs generated during star formation. This accretion process produces very powerful engines able to drive the optical jets and the molecular outflows. A fraction of the engine energy is released into heating thus the temperature of the engine ranges from the 3000K of the inner disk material to the 10MK in the areas where magnetic reconnection occurs. There are important unsolved problems concerning the nature of the engine, its evolution and the impact of the engine in the chemical evolution of the inner disk. Of special relevance is the understanding of the shear layer between the stellar photosphere and the disk; this layer controls a significant fraction of the magnetic field building up and the subsequent dissipative processes ougth to be studied in the UV. This contribution focus on describing the connections between 1 Myr old suns and the Sun and the requirements for new UV instrumentation to address their evolution during this period. Two types of observations are shown to be needed: monitoring programmes and high resolution imaging down to, at least, milliarsecond scales.Comment: Accepted for publication in Astrophysics and Space Science 9 figure

    Relating pseudospin and spin symmetries through charge conjugation and chiral transformations: the case of the relativistic harmonic oscillator

    Get PDF
    We solve the generalized relativistic harmonic oscillator in 1+1 dimensions, i.e., including a linear pseudoscalar potential and quadratic scalar and vector potentials which have equal or opposite signs. We consider positive and negative quadratic potentials and discuss in detail their bound-state solutions for fermions and antifermions. The main features of these bound states are the same as the ones of the generalized three-dimensional relativistic harmonic oscillator bound states. The solutions found for zero pseudoscalar potential are related to the spin and pseudospin symmetry of the Dirac equation in 3+1 dimensions. We show how the charge conjugation and γ5\gamma^5 chiral transformations relate the several spectra obtained and find that for massless particles the spin and pseudospin symmetry related problems have the same spectrum, but different spinor solutions. Finally, we establish a relation of the solutions found with single-particle states of nuclei described by relativistic mean-field theories with scalar, vector and isoscalar tensor interactions and discuss the conditions in which one may have both nucleon and antinucleon bound states.Comment: 33 pages, 10 figures, uses revtex macro

    B fields in OB stars (BOB): Detection of a magnetic field in the He-strong star CPD-57{\deg} 3509

    Get PDF
    We report the detection of a magnetic field in the helium-strong star CPD-57 3509 (B2 IV), a member of the Galactic open cluster NGC3293, and characterise the star's atmospheric and fundamental parameters. Spectropolarimetric observations with FORS2 and HARPSpol are analysed using two independent approaches to quantify the magnetic field strength. A high-S/N FLAMES/GIRAFFE spectrum is analysed using a hybrid non-LTE model atmosphere technique. Comparison with stellar evolution models constrains the fundamental parameters of the star. We obtain a firm detection of a surface averaged longitudinal magnetic field with a maximum amplitude of about 1 kG. Assuming a dipolar configuration of the magnetic field, this implies a dipolar field strength larger than 3.3 kG. Moreover, the large amplitude and fast variation (within about 1 day) of the longitudinal magnetic field implies that CPD-57 3509 is spinning very fast despite its apparently slow projected rotational velocity. The star should be able to support a centrifugal magnetosphere, yet the spectrum shows no sign of magnetically confined material; in particular, emission in H{\alpha} is not observed. Apparently, the wind is either not strong enough for enough material to accumulate in the magnetosphere to become observable or, alternatively, some leakage process leads to loss of material from the magnetosphere. The quantitative spectroscopic analysis of the star yields an effective temperature and a logarithmic surface gravity of 23750+-250 K and 4.05+-0.10, respectively, and a surface helium fraction of 0.28+-0.02 by number. The surface abundances of C, N, O, Ne, S, and Ar are compatible with the cosmic abundance standard, whereas Mg, Al, Si, and Fe are depleted by about a factor of 2. This abundance pattern can be understood as the consequence of a fractionated stellar wind. CPD-57 3509 is one of the most evolved He-strong stars known.Comment: 15 pages, 11 figures. Accepted for publication in A&

    Theoretical Aspects of the Fractional Quantum Hall Effect in Graphene

    Full text link
    We review the theoretical basis and understanding of electronic interactions in graphene Landau levels, in the limit of strong correlations. This limit occurs when inter-Landau-level excitations may be omitted because they belong to a high-energy sector, whereas the low-energy excitations only involve the same level, such that the kinetic energy (of the Landau level) is an unimportant constant. Two prominent effects emerge in this limit of strong electronic correlations: generalised quantum Hall ferromagnetic states that profit from the approximate four-fold spin-valley degeneracy of graphene's Landau levels and the fractional quantum Hall effect. Here, we discuss these effects in the framework of an SU(4)-symmetric theory, in comparison with available experimental observations.Comment: 12 pages, 3 figures; review for the proceedings of the Nobel Symposium on Graphene and Quantum Matte

    Relativistic confinement of neutral fermions with a trigonometric tangent potential

    Get PDF
    The problem of neutral fermions subject to a pseudoscalar potential is investigated. Apart from the solutions for E=±mc2E=\pm mc^{2}, the problem is mapped into the Sturm-Liouville equation. The case of a singular trigonometric tangent potential (tanγx\sim \mathrm{tan} \gamma x) is exactly solved and the complete set of solutions is discussed in some detail. It is revealed that this intrinsically relativistic and true confining potential is able to localize fermions into a region of space arbitrarily small without the menace of particle-antiparticle production.Comment: 12 page

    Enraizamento de estacas de urucuzeiro Bixa orellana L.

    Get PDF
    bitstream/item/34014/1/CPATU-CirTec55-2.pd
    corecore